Radiology and Physics – Career Options and Other Important Aspects

Radiology and Physics – Career Options and Other Important Aspects Most people are familiar with the terms radiology and physics – the former is the branch of medicine that deals with the research in and application of imaging technologies for diagnostic and treatment purposes like X-rays, CT, MRI, PET, ultrasound and nuclear medicine, while the latter is a branch of science that deals with the properties of matter and energy and the relationships between them. Putting the two together, we get radiologic physics, a specialized branch of physics that has three fields: Therapeutic radiological physics – deals with the physical aspects of the therapeutic applications of X-rays, gamma rays, electron beams, charged particle beams, neutrons, and radiations from sealed radionuclide sources, the use of the equipment that produces them, and the safety aspects of using radiation in diagnostics and therapy. Diagnostic radiological physics – concerns the diagnostic applications of X-rays, gamma rays from sealed sources, ultrasonic radiation and magnetic resonance, the use of the equipment that produces them, and the safety aspects in using them for diagnostic and therapeutic purposes. Medical nuclear physics - is related to the therapeutic and diagnostic applications of radionuclides (from unsealed sources), the equipment associated with their production and use, and the safety aspects of radiation. You can choose to obtain certification from the American Board of Radiology (ABR) in one or more of the above areas of study. As a radiologic physicist, you are qualified to act in an advisory capacity to physicians regarding the physical aspects of radiation therapy, diagnostic radiation and/or nuclear medicine. You will be working directly with oncologists and physicians in planning the treatment of patients who require radiation therapy and in delivering the therapy using the right equipment. Besides this, you are also in charge developing and directing quality control programs for equipment and procedures; this means that you ensure that the equipment that delivers the radiation works properly and has been correctly calibrated and that you ensure that complicated therapy routines are tailored to the needs of each patient. You also supervise the work of dosimetrist (they work as part of oncology teams and analyze data to come up with the right course of therapy to deliver the right dosage of radiation to the right location, minimizing harm to neighboring organs and tissue). Radiologic physicists must have at least a master’s degree if they wish to find good jobs and challenging positions with healthcare centers, hospitals and research facilities.
This guest post is contributed by Rachel Davis, she writes on the topic Radiology programs. She welcomes your comments at her email id:

Popular Posts