## Pages

### Conceptual Question of SHM

1.To execute SHM system must have
a. Elasticity
b. Moment of Inertia
c. Inertia
d. all the above

2. Angular frequency of system executing SHM depends on
a. mass
b. total energy
c.force constant
d. Amplitude

3.A particle of mass m is attached to a massless string of lenght L and is oscillating in vertical plane with one end of string fixed to rigid support.Tension in the string at a certain instant is T=kmg.Then
a. K can never be equal to 1
b. K can never be greater than 1
c. K can never be greater than 3
d K can never be less than 1

4.The bob A of a simple pendulum is released when the string makes an angle 45 with the verical.Its hit another bob B of the same mateial and same mass kept at rest on the table.If the collsion is elastic
a. B moves first and A follows it with half of its intial velocity
b.A comes to rest and B moves with the velocity of A
c Both A and B moves with same velocity of A
d Both A and B comes to rest at B

5.For a particle executing SHM
a.Acceleration is proportional to the displacement in the direction of the motion
b.Acceleration is proportional to the displacement but in opposite direction of the motion
c. Total energy of particle remains constant
d KE and PE of particle remains constant

6. which one of the following statement is true
a. Maximum value of velocity in SHM is A2ω
b.In SHM velocity of the particle is maximum when displacment is maximum
c.Velocity of the particle is zero in SHM when displacement attains its maximum on either side
d.Velocity in SHM vary periodically with time

7. which one of the following statement is true
a. Amplitude and intial displacement of particle in SHM are always equal
b.Amplitude and intial displacement of particle in SHM are never equal
c. Amplitnude of a particle in SHM can be equal to its initial displacement
d. Amplitnude of a particle in SHM can be greater to its initial displacement

8.The amplitutde and phase of a particle executing SHM depends on
a.The displacemnt of particle at t=0
b.The velocity of particle at t=0
c Both Velocity and displacement at t=0
d Neither velocity and displacemnt at t=0

Solutions