**Notes for Examination**

**Temperature**

Relation between Celsius and fahrenhite scale is

T

_{F}=9/5 T

_{C}+ 32°

T

_{F}- Fahrenhite Temperature

T

_{C}- Celsius Temperature

Relation between Celsius and kelvin scale is

T

_{C}= T

_{K}- 273.15 K

T

_{K}- Temperature in Kelvin

T

_{C}- Temperature in celsius

- If R

_{0}& R

_{100}are resistance of metak wire at ice and steam point resp then temp t can be defined corresponding to resistance R

_{T}as follows

= T | (R_{T}-R_{0})*100 |

R_{100}-R _{0} |

- The pressure,volume and temperature in kelvin of such gases obey the equation

PV=nRT ----(1)

**Thermal expansion**

ΔL=αLΔT

**Specific Heat Capacity**

= c | `Q |

nΔT |

**Gas Laws**

**Boyles Law**: PV=constant

**Charles Law**: V/T=constant

**Dalton Law of Partial Pressure**: P=P

_{1}+ P

_{2}+P

_{3}

**Root mean Square Velocity**

V

_{rms}=√3RT/M

**Mean Square Velocity**

V

_{m}=√8RT/πM

**Average Velocity**

V=√2RT/M

Also

**V**>

_{rms}**V**>

_{m}**V**

**Average kinetic Energy of Gas**=3/2nRT

**First law of Thermodynamics**

ΔU=Q-W

**Gas Processes**

**Isothermal Process**: PV=constant ,ΔU=0,Q=W,Molar Specific Heat=infinity

**Adaibatic Process**: PV

^{y}=constant,Q=0,ΔU=-W,Molar Specific Heat=zero

**Polytropic Process**: PV

^{n}=constant,Molar Specific Heat=R/y-1 + R/1-n

**Volume Constant**: P/T=constant W=0,ΔU=Q,Molar Specific Heat=C

_{v}

**Pressure Constant**: V/T=constant ΔU=Q-W ,Molar Specific Heat=C

_{P}

**Internal energy depends on Temperature.**

So for same temperature change ΔT

nC

_{v}ΔT=Q

_{1}-W

_{1}=Q

_{2}-W

_{2}=Q

_{3}-W

_{3}

**Molar Specfic Heat Capacity of any process is given by**

C=C

_{v}+ Pdv/ndT where n is no of moles of the gas

**Workdone by Gas**= ∫PdV

**Heat Conduction**

Q=-KAdT/dx

**Wein displacement law**λT

^{4}=Constant

**Stefan's Law**

Q=eσT

^{4}

**Newton law of Cooling**

dT/dx=b(T-T

_{s})

_{}